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Abstract – In the 1960s E. Fama developed the efficient
market hypothesis (EMH) which asserts that the financial
market is efficient if its prices are formed on the basis
of all publicly available information. That means technical
analysis cannot be used to predict and beat the market.
Since then, it was widely examined and was mostly accepted
by mathematicians and financial engineers. However, the
predictability of financial-market returns remains an open
problem and is discussed in many publications. Usually, it
is concluded that a model able to predict financial returns
should adapt to market changes quickly and catch local
dependencies in price movements. The Bayesian vector
autoregression (BVAR) models, support vector machines
(SVM) and some other were already applied to financial
data quite succesfully. Gaussian process (GP) models are
emerging non-parametric Bayesian models and in this paper
we test their applicability to financial data. GP model is
fitted to daily data from U.S. commodity markets. For a
comparison BVAR model and benchmark model that is
commonly used in todays financial mathematics are chosen.
The results indicate that GP models are applicable to
financial data as well as BVAR models.
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I. INTRODUCTION

The efficient market hypothesis (EMH) asserts that

financial market is efficient if its prices are formed on

the basis of all publicly available information. In other

words, one cannot constantly achieve positive returns

based on the information publicly available at the time

of the investment. That means technical analysis cannot

be used to predict and beat the market. This hypothesis

was developed by E. Fama and published in his Ph.D.

thesis [1] and other famous articles [2], [3] in the 1960s

following earlier work of L. Bachelier [4]. Since then,

it was widely examined and was mostly accepted by

mathematicians and financial engineers, due to the eco-

nomic arguments, indecisive experimental proofs against

it and greater ease of computation [5] of related modeling
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problems, mainly on the side of optimization and decision

making. The predictability of financial market returns

remains an open problem and is discussed for example

in [6], [7]. Article [7] reveals that a model able to predict

financial returns should adapt to market changes quickly

and catch local dependencies in price movements. Based

on this conclusion the Bayesian vector autoregression

(BVAR) [8], [9] models, support vector machines [10],

[11] etc. were already applied to financial data quite

succesfully. Gaussian process (GP) models are emerging

non-parametric Bayesian models and in this paper we test

their applicability to financial data. We apply them to the

U.S. commodity market data. For comparison we use the

results obtained in [9]. Although the experimental setup

is not identical, we tried to make it as close as possible,

so that the results are aproximately comparable.

The GP models form a new method for non-linear

system identification. A GP model is a probabilistic non-

parametric black-box model. It differs from most other

frequently used black-box identification approaches in

that it does not approximate the modeled system by

fitting the parameters of the selected basis functions, but

rather searches for the relationship among measured data.

GP models are closely related to approaches such as

support vector machines and especially relevance vector

machines. The output of a GP model is a normal dis-

tribution, expressed in terms of mean and value. The

mean value represents the most likely output, and the

variance can be viewed as a measure of its confidence.

The predicted variance, which depends on the amount of

available identification data, is important information.. GP

models can be used for model identification when data is

noisy and when there are outliers or gaps in the input

data.

The paper is organized as follows: Section II briefly

describes modeling with Bayesian vector autoregression

and Section III describes Gaussian processes. Section

IV presents the results obtained from selected models,

applied to the U.S. commodity markets data, with the

description of quality measures of point predictions of the

individual models. Section V concludes the paper with the

summary of work and indicates direction for future work.
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II. MODELING WITH BAYESIAN VECTOR

AUTOREGRESSION

A BVAR model is a special type of multivariate au-

toregressive (AR) model. A vector autoregression (VAR)

model expresses a set of variables as a weighted linear

combination of each variables’s past values of the other

variables in the set and is defined as

y(t) = c+
n
∑

i=1

Θ(i)y(t− i) + Σǫ(t) (1)

where y(t) is an N × 1 vector of random variables, c is

an N ×1 vector of unknown constants, Θ(i) is an N ×n

matrix of parameters that are estiamted and ǫ(t) is a white

noise with covariance 1, where 1 is an identity matrix.

VAR models require the estimation of N + nN2 pa-

rameters (coefficients) and are therefore often overparam-

eterized which means that in most cases the number of

parameters estimated is large relative to the sample size.

This can lead to estimating less important relationships in

the data that are random and possibly to large prediction

errors. Rather than imposing strict zero restrictions on

parameters in [8] is proposed using the Bayesian method

to place weaker restrictions on parameters. Bayesian

method treats parameters as random variables rather than

as fixed quantities like in the basic VAR models. This

results in distribution of parameters and by that in more

accurate predictions.

More details about BVAR models, the estimation of

parameters and predicting, can be found in [8], [9].

III. MODELING WITH GAUSSIAN PROCESSES

A GP model is a flexible, probabilistic, non-parametric

model with uncertainty predictions. Its properties and

application potentials are reviewed in [12], [13], [14],

[15].

A Gaussian process is a collection of random variables

which have a joint multivariate Gaussian distribution

(Figure 1). Assuming a relationship of the form y = f(x)
between input x and output y, we have y1, . . . , yN ∼
N (0,Σ), where Σpq = Cov(yp, yq) = C(xp,xq) gives

the covariance between output points corresponding to

input points xp and xq . Thus, the mean µ(x) and the

covariance function C(xp,xq) fully specify the Gaussian

process.

The value of covariance function C(xp,xq) expresses

the correlation between the individual outputs f(xp)
and f(xq) with respect to inputs xp and xq . Note that

the covariance function C(·, ·) can be any function that

generates a positive semi-definite covariance matrix. It is

usually composed of two parts,

C(xp,xq) = Cf(xp,xq) + Cn(xp,xq), (2)

where Cf represents the functional part and describes the

unknown system we are modeling, and Cn represents the

noise part and describes the model of noise.
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Figure 1. Modeling with GP: (a) Gaussian prediction at a new
point x1, conditioned on the training points (.); (b) the

predictive mean together with its 2σ error bars for two points,
x2 that is close to the training points, and x1 that is more

distant.

For noise part most commonly used is the constant

covariance function. Choice of the covariance function for

the functional part also depends on the stationarity of the

process. Assuming stationary data most commonly used

covariance function is the square exponential covariance

function, on the contrary assuming non-stationary data

the polynomial or its special case the linear covariance

function (3) can be used.

C(xp,xq) =
D
∑

d=1

wd · xdp · xdq + δpqv0 (3)

where wd and v0 are the ’hyperparameters’ of the covari-

ance function, D is the input dimension, and δpq = 1 if

p = q and 0 otherwise. Hyperparameters can be written

as a vector Θ = [w1, . . . , wD, v0]
T . Other forms and

combinations of covariance functions suitable for various

applications can be found in [12]. For a given problem,

the hyperparameter values are learned using the data at

hand. Expression δpqv0 models the noise, presumed as
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white, while parameters wd indicate the importance of

individual inputs: if wd is zero or near zero, it means the

inputs in dimension d contain little information and could

possibly be neglected.

Consider a set of N D-dimensional input vectors

X = [x1,x2, . . . ,xN ] and a vector of output data y =
[y1, y2, . . . , yN ]T . Based on the data (X,y), and given

a new input vector x∗, we wish to find the predictive

distribution of the corresponding output y∗. Unlike in

other models, there is no model parameter determination

within a fixed model structure. In building such model,

most of the effort consists of tuning the hyperparameters

of the covariance function. The number of parameters to

be optimized is small (D + 1 for linear covariance func-

tion), which means that optimization convergence might

be faster than with parametric models and that the ’curse

of dimensionality’, so common to black-box identification

problems, is circumvented or at least decreased.

GP models can be easily utilized for regression calcu-

lation. Based on training set X, a covariance matrix K of

size N×N is determined. The aim is to find the distribu-

tion of the corresponding output y∗ for some new input

vector x∗ = [x1(N + 1), x2(N + 1), . . . , xD(N + 1)]T .

For the collection of random variables

[y1, . . . , yN , y∗]T we can write:

[y, y∗]T ∼ N (0,K∗) (4)

with the covariance matrix

K∗ =

















K k(x∗)

kT (x∗) k(x∗)

















(5)

where y = [y1, . . . , yN ]T is an N × 1 vector of training

targets. The predictive distribution of the output for a new

test input has normal probability distribution with mean

and variance

µ(y∗) = k(x∗)TK−1y, (6)

σ2(y∗) = k(x∗)− k(x∗)TK−1k(x∗), (7)

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is the N×1

vector of covariances between the test and training cases,

and k(x∗) = C(x∗,x∗) is the covariance between the test

input itself.

The obtained model, in addition to mean value, also

provides information about the confidence in prediction

by the variance. Usually, the confidence of the prediction

is depicted with 2σ interval which is about 95% confi-

dence interval. This confidence region can be seen in the

example in Figure 2 as a gray band. It highlights areas of

the input space where the prediction quality is poor, due

to the lack of data or noisy data, by indicating a wider

confidence band around the predicted mean.
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Figure 2. Using GP models: in addition to mean value
(prediction), we obtain a 95% confidence region for the

underlying function f (shown in gray).

To accurately reflect the correlations present in the

training data, the hyperparameters of the covariance

function need to be optimized. Due to the probabilistic

nature of the GP models, the common model optimization

approach where model parameters and possibly also the

model structure are optimized through the minimization

of a cost function defined in terms of model error (e.g.

mean square error), is not readily applicable. A proba-

bilistic approach to the optimization of the model is more

appropriate. Actually, instead of minimizing the model

error, the probability of the model is maximized.

The maximization of the probability of the model

is usually done with maximum- likelihood estimation

method. It can be restated as a cost function that is to

be maximized. For numerical scaling purposes the log of

the marginal likelihood is taken:

L(Θ) = −
1

2
log(|K|)−

1

2
yTK−1y −

N

2
log(2π). (8)

A frequently used method for optimizing the cost

function is a conjugate gradients method. While this is

a deterministic method, its result heavily depends on

initial values of hyperparameters, especially for complex

multidimensional systems, where the cost function has

numerous local optima. Therefore a conjugate gradients

method should be run repeatedly with various initial

values of hyperparameters. As the space of possible values

is huge, the initial values are often chosen randomly.

Therefore, evolutionary algorithms can be considered as

an alternative approach [16].

For modeling of time series we consider representation

where the output at time t depends on the delayed outputs

y and the exogenous inputs u:

y(t) = f(y(t− 1), . . . , y(t− n),

u(t− 1), . . . , u(t− n)) + ǫ(t) (9)
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where ǫ(t) is white noise and the output y(t) depends

on the state vector x(t) = [y(t − 1), y(t − 2), . . . , y(t −
n), u(t− 1), u(t− 2), . . . , u(t− n)]T at time step t.

Assuming the signal is known up to t, we wish to

predict the output of the system h steps ahead, i.e.,

we need to find the predictive distribution of y(t + h)
corresponding to x(t+h). Multiple-step-ahead predictions

of a system modeled by (9) can be achieved by iteratively

making repeated one-step-ahead predictions, up to the

desired horizon [17], [18].

A noticeable drawback of system identification with GP

models is the computation time necessary for the mod-

eling. Regression based on GP models involves several

matrix computations in which the load increases with the

third power of the number of input data, such as matrix

inversion and the calculation of the log-determinant of the

used covariance matrix. This computational greed restricts

the amount of training data, to at most a few thousand

cases. To overcome the computational-limitation issues

and to also make use of the method for large-scale dataset

applications, numerous authors have suggested various

sparse approximations [19], [20]. A common property to

all sparse approximate methods is that they try to retain

the bulk of the information contained in the full training

dataset, but reduce the size of the resultant covariance

matrix so as to facilitate a less computationally demanding

implementation of the GP model.

IV. EXPERIMENTAL RESULTS

To assess of the potential of GP models on financial

data, the U.S. commodity markets data from [9] was

chosen. The data consist of 11 futures markets in period

from 2nd January 1990 to 9th August 2005:

1) Australian Dollar [AD] (Currency, CME)

2) British Pound [BP] (Currency, CME)

3) Cocoa [CC] (Soft, CSCE)

4) Canadian Dollar [CD] (Currency, CME)

5) Light Crude Oil [CL] (Energy, NYMEX)

6) Cotton [CT] (Grain, NYCE)

7) Feeder Cattle [FC] (Livestock, CME)

8) Gold [GC] (Metal, COMEX)

9) Heating Oil [HO] (Energy, NYMEX)

10) Gasoline [HU] (Energy, NYMEX)

11) Wheat [W] (Grain, CBOT)

Each of these markets has 33 information channels, but

among these channels we have assumed only 7: opening,

highest, lowest and closing prices, spot price, contango

and backwardation. The goal is to predict the closing

price of the futures contracts up to a horizon of h = 14
days. The data at hand contained 3, 928 trading days from

which first 1, 000 trading days are used to train the model

and the rest of data is used for validation.

Regarding [9] future contracts usually are not traded

for a period of 15 years. Therefore the time series had

to be merged from data of more different contracts. The

time series used are synthesized as follows: the prices at

the end of the trading period are real market prices and as

we go back in time, when the active contract (the contract

with the highest trade activity) changes, we switch to the

previous active contract with price adjusted by an additive

constant, so that there is no gap at the time of change.

This way we create an artificial time series, which will

differ from the time series of real prices. In the future this

artificial transformation of data will be removed and the

models will be used on a single contract time series.

As financial data is typically non-stationary and to be

more fair in comparisson to BVAR models the linear co-

variance function with automatic relevance determination

is used for the functional part and the constant covariance

function for the noise part. For modeling two types of

training are used: offline and windowing. In the offline

mode the model trained on the first 1, 000 trading days

is used for all predictions, while in the windowing mode

for each prediction a new model is trained on preceding

1, 000 trading days. Such a training should better catch

local dependencies and adapt to market changes.

Both proposed models are compared to the BVAR

model and the benchmark model described in [9]. Note

that in our experiment no transformations are performed

and no forgetting factors are used as well.

To measure the error of the prediction, the median

relative error of the prediction is used,

MERE = median

∣

∣

∣

∣

ŷ(t+ h)

y(t+ h)
− 1

∣

∣

∣

∣

. (10)

Here ŷ(t+ h) is the already mentioned point estimate of

the price at time t + h and y(t + h) is real price at the

same time. Median error is chosen for its robustness in

the case of heavily outlying predictions.

Note that the predicted change in price is small com-

pared to the price in vast majority of cases and especially

in the cases with small prediction error. Therefore the

ratio in MERE computation stays positive, so that it is

a good measure of a relative error. Asymmetry between

positive and negative relative error is neglected.

The obtained values of MERE (in parts per mille) for

all markets and horizons h = 1, . . . , 14 are summarized

in Figure 3 as absolute differences where the basis (value

0) is the MERE value of the benchmark model. In other

words, each horizon of each market is presented as a

group of three columns. Red column presents online

GP model (windowing), blue column presents offline GP

model and green column presents BVAR model. Each col-

umn presents absolute difference between corresponding

model and benchmark model. Higher absolute difference

means lower value of MERE, that is, better model, and

vice versa.

From Figure 3 can be seen that there are markets (AD,

CC, GC and W) where both GP models, trained online

and offline, perform better than BVAR and benchmark

model for all horizons, while in the case of the market

675



GP (windowing) GP (offline) BVAR (normal)

-1

1

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

2

4

-1

1

3

-1

1

3

-2

0

2

4

-2

0

2

-1

1

3

5

-2

0

2

-2

0

2

AD

BP

CC

CD

CL

CT

FC

GC

HO

HU

W

-2

0

2

4

-3

-1

1

3

5

Figure 3. Median relative error (shown in parts per mille [·103]) computed for both, offline and online (windowing), GP models
and normal BVAR models for horizons from 1 to 14. Results are compared to median realtive error of normal benchmark model

and are presented as absolute difference.
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FC both models perform similar to BVAR model. On the

other hand, there are markets (BP, CD, CL) where only

online GP model (windowing) performs better than BVAR

and benchmark model while offline GP model performs

better than benchmark model and similar to BVAR model

in lower horizons and worse than benchmark model in

higher horizons. It seems that these markets have strong

local dependencies, therefore model adaptation is neces-

sary. Especially in the case of the market CD where offline

GP model performs very poorly for higher horizons.

In the case of markets HO nad HU can be seen that

both, online and offline, GP models are outperformed by

BVAR model for all horizons and even by benchmark

model for higher horizons. As it is concluded in [9]

the reason could be low information value of the data

channels used, which is in agreement with the EMH.

V. CONCLUSION

The results from our experimental work indicate that

GP models are applicable to financial data as well as

BVAR models are. GP models performed slightly better

than BVAR models and benchmark models on major

markets, specially in the case of online training with

windowing which better catches local dependencies and

adapts to market changes. On the other hand, GP models

are outperformed by both, BVAR and benchmark, models

on markets HO and HU. The reason for this could be low

information value of the data channels used.

Among comparable results, the variance, which is ob-

tained without additional computation and can be inter-

preted as the measure of confidence in prediction, seems

useful in the later decision making. Therefore GP models

should be useful for applications where uncertainty can

be taken into account.

Interesting further research might be investigation of

correlations between markets. This could be done by

merging all channels of all markets together and by using

optimization with automatic relevance detection. In such a

way influential channels would be neglected and therefore

only important channels would be used. Although this

might be huge computational load, by using modern

hardware and paralellization we presume it could be done

in a reasonable time.
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